基于偏振串扰分析仪的 LiNbO3 集成 Y 波导的测试方法

邹欢欢^{1,2},姚晓天^{1,3},于超^{2,3},朱益清¹* 「江南大学理学院,江苏无锡 214122;

²苏州光环科技有限公司, 江苏 苏州 215123;

³河北大学物理科学与技术学院,河北保定071002

摘要 结合分布式偏振串扰分析仪,利用琼斯矩阵对 LiNbO₃集成 Y 波导进行理论建模分析,并且得到了实验验证。实验证明,偏振串扰分析仪能评估出 Y 波导的整体消光比,且能够测试出 Y 波导内部的一个缺陷的串扰值,弥补了强度型消光比测试仪的不足。最后用单偏振光纤验证了 Y 波导测试结果的合理性。分布式偏振串扰分析仪在实际应用中对筛选性能更加优异的 LiNbO₃集成光学芯片有着重要意义。

关键词 集成光学;光纤通信;分布式偏振串扰测试;LiNbO3集成Y波导;光纤陀螺;单偏振光纤
 中图分类号 TN253 文献标志码 A doi: 10.3788/AOS202040.0613001

Test Method for LiNbO₃ Integrated Y-Waveguide Based on Polarization Crosstalk Analyzer

Zou Huanhuan^{1,2}, Yao Xiaotian^{1,3}, Yu Chao^{2,3}, Zhu Yiqing^{1*}

¹ School of Science, Jiangnan University, Wuxi, Jiangsu 214122, China;

² Suzhou Optoring Technology Co., Ltd., Suzhou, Jiangsu 215123, China;

³ College of Physics Science & Technology, Hebei University, Baoding, Hebei 071002, China

Abstract In this paper, a theoretical modeling analysis of LiNbO₃ integrated Y-waveguide based on a distributed polarization crosstalk analyzer was conducted using the Jones matrix and experimentally verified. Results of experiments show that the polarization crosstalk analyzer can evaluate the overall extinction ratio of Y-waveguide and test the crosstalk value of a defect inside the Y-waveguide, which compensates for the deficiency of the intensity extinction ratio tester. Finally, the rationality of test results of the Y-waveguide was verified by single polarization fiber. The distributed polarization crosstalk analyzer has great significance for screening LiNbO₃ integrated optical chips with better performance in practical applications.

Key words integrated optics; optical fiber communications; distributed polarization crosstalk test; LiNbO₃ integrated Y-waveguide; fiber optic gyroscope; single polarized fiber OCIS codes 130.3730; 060.2300; 120.3180; 060.2800

1 引 言

Y 波导作为光纤陀螺的重要器件之一,具有分 光、相位调制和偏振器的作用,而 Y 波导的消光比 是影响光纤陀螺精度的重要参数之一^[1]。目前对于 Y 波导的制作已经有了较为成熟的工艺,尤其在如 何提高性能的方面,但对于 Y 波导的偏振性能检测 技术方面还有较大欠缺。目前发展较为成熟的检测 方法是基于强度型的检测方法,它根据测量出来的 最大与最小光功率可以直接计算出 Y 波导的消光 比大小,测试方法较为简单。其主要测试方法有日本科学家发明的起偏器 45°法、北京理工大学徐宏 杰等发明的偏振控制器法、旋转波片法、消偏法等, 但这些方法易受外部因素的影响,如光源的稳定性、 光路的同轴性及准直性等^[2]。同时由于一些器件本 身受精度的限制,对高消光比的 Y 波导测试具有一 定的局限性,且这些方法测试出来的消光比不仅包括 Y 波导的消光比,还包括所用测试器件的消光比、Y 波导尾纤的偏振串扰、Y 波导内部的各种偏振串扰, 因此很难单独对 Y 波导芯片的偏振特性进行精确测

* E-mail: zhuyq11@126.com

收稿日期: 2019-10-17;修回日期: 2019-11-25;录用日期: 2019-11-29

基金项目:国际科技合作专项资助项目(2014DFA12930)

量,也难以准确判断 Y 波导内部是否有缺陷点。

用偏振串扰强度来评估 Y 波导的消光比具有 极大的优越性^[3]。但目前国内外对此方面的研究还 较少,比较典型的研究有哈尔滨工程大学杨军等基 于白光干涉法提出的光学相干域偏振测量仪系 统^[4],该系统分为单通道和双通道^[5]两种,单通道的 系统每次只能检测 Y 波导的一支尾纤的偏振串扰, 双通道的系统能同时检测两只 Y 波导尾纤的偏振 串扰。该系统能检测出 Y 波导的消光比,以及波导 与尾纤之间耦合点的串扰值大小,能够对 Y 波导本 身的消光比进行评估,具有一定的优越性,但对 Y 波导内部缺陷情况未进行分析。

本文结合分布式偏振串扰分析仪,从测试原理 上,利用琼斯矩阵对基于质子交换工艺由 LiNbO₃ 集成的 Y 波导^[6]进行理论建模分析,并且得到了实 验验证。实验结果证明,偏振串扰分析仪能评估出 Y 波导的整体消光比,且能够测试出 Y 波导内部的 一个缺陷点的串扰值,弥补了强度型消光比测试仪 的不足。最后利用与 Y 波导起偏特性相似的单偏 振(PZ)光纤^[7],测试出 PZ 光纤存在的外部模拟缺 陷点,验证了 Y 波导内部缺陷点测试结果的合理 性。利用本文提出的方法,可以筛选出性能更加优 异的 LiNbO₃集成光学芯片,并且对 LiNbO₃集成 光学芯片制作工艺的提升有着重要意义。

2 测试原理

2.1 基于偏振串扰分析仪的测试光路分析

图 1 为偏振串扰分析仪测试波导的原理图,偏振串扰分析仪由低相干宽谱光源(SLD 光源)、0°起偏器、45°检偏器、耦合器、法拉第旋转镜、可变延迟线及信号解调输出系统组成^[8],其中 DUT 表示待测器件。

Fig. 1 Distributed polarization crosstalk analyzer. (a) Set-up diagram; (b) test principle

分布式偏振串扰分析仪与光学相干域偏振测量 仪系统的区别在于,光学相干域偏振测量仪系统采 用的是马赫-曾德尔干涉仪,两臂之间采用了偏振控 制器、环形器及自聚焦透镜,虽然该结构能够成倍增 加两臂之间的光程差,抑制功率损耗的波动^[9],但其 结构复杂,且测试出来的延时值会带入干涉仪本身 的延迟量,当自聚焦透镜不能将光线完全准直时,也 会引起测试误差;而偏振串扰分析仪系统内采用的 是迈克耳孙干涉仪,干涉仪两臂的反射镜为法拉第 旋转镜,由于法拉第旋转镜反射出来的光的偏振态 会旋转 90°,因此该方式可以消除干涉仪中由每个 臂单独引入的延迟量,使测试出来的延时值更加精 确,且仅使用一个耦合器,结构简单。

用偏振串扰分析仪测试 Y 波导消光比的测试 原理如图 2 所示。一束低相干宽谱光通过起偏角为 0°的起偏器耦合进入保偏光纤 PMF₁ 后,经过 Y 波 导,从 PMF₇输出正交光束,再通过检偏角度为 45° 的检偏器,将两束相互垂直的光束进行合成,合成光 束在一个轴上传输。实验方法为,在 B、C 之间接一 段延长光纤,且只变化 B 点的熔接角度,其中 PMF1 和 PMF₇ 为系统内起偏器和检偏器尾纤, PMF₂和 PMF_6 为保偏跳线, PMF₄和 PMF₅为 Y 波导尾纤, PMF。为熔接的那段延长保偏光纤(为避免芯片消 光对应的相干峰与测试用的光源的相干峰重合), A、G 点分别为偏振串扰分析仪的光输入和输出连 接头所在位置,C、F分别为保偏跳线与 Y 波导尾纤 连接点, θ 为 PMF₂和 PMF₃对轴角度。将 Y 波导通 过保偏跳线与输入端尾纤 0°/90°熔接(若测试的 Y 波导的通光轴为慢轴则 0°熔接,若通光轴为快轴则 90°熔接),由于Y波导能抑制非通光轴上的光,经 过 45°检偏器后两束光干涉现象的串扰值很低;当 Y 波导通过保偏跳线与输入端尾纤 45°熔接时,光功 率被平均分配到 Y 波导的快慢轴上,经过 45°检偏 器后两束光干涉现象的串扰值会比 0°/90°熔接时

高,通过解调干涉仪模块的光程扫描,可以获得 Y 波导芯片的起偏能力大小、Y 波导内部缺陷点串扰 值和输入/输出尾纤的偏振串扰幅值,弥补了强度型

结合偏振串扰分析仪原理,用琼斯矩阵法对波

消光比测试仪的不足,为筛选出性能更加优异的 LiNbO₃集成光学芯片提供了更可靠的方法,并且有 利于 LiNbO₃集成光学芯片制作工艺的提升。

图 2 Y 波导测试原理图

Fig. 2 Schematic of Y-waveguide test

2.2 测试建模分析

导理论建模进行分析。当熔接角度 $\theta = 0^{\circ}/90^{\circ}$ 时,输 出光强 $I_{v}(\tau)$ 为

$$I_{Y}(\tau) = \frac{1}{2} (1 - \rho_{A}^{2}) (1 - \rho_{B}^{2}) (1 - \rho_{C}^{2}) (1 - \rho_{D}^{2}) (1 - \rho_{E}^{2}) (1 - \rho_{F}^{2}) (1 - \rho_{G}^{2}) \times \left[G(\tau) + \frac{\rho_{G}^{2}}{1 - \rho_{G}^{2}} G(\tau - \tau_{7}) + \frac{\rho_{F}^{2}}{1 - \rho_{F}^{2}} G(\tau - \tau_{7}) + \frac{\rho_{E}^{2}}{1 - \rho_{E}^{2}} G(\tau - \tau_{5} - \tau_{6} - \tau_{7}) \right].$$
(1)

当熔接角度 $\theta = 45^{\circ}$ 时,输出光强 $I_{\rm Y}(\tau)$ 为

$$I_{Y}(\tau) = \frac{1}{2} (1 - \rho_{A}^{2}) (1 - \rho_{B}^{2}) (1 - \rho_{C}^{2}) (1 - \rho_{D}^{2}) (1 - \rho_{E}^{2}) (1 - \rho_{F}^{2}) (1 - \rho_{G}^{2}) \times \left[G(\tau) + \frac{\rho_{A}^{2}}{1 - \rho_{A}^{2}} G(\tau - \tau_{1}) + \frac{\rho_{B}^{2}}{1 - \rho_{B}^{2}} G(\tau - \tau_{2}) + \frac{\rho_{C}^{2}}{1 - \rho_{C}^{2}} G(\tau - \tau_{3}) + \frac{\rho_{D}^{2}}{1 - \rho_{D}^{2}} G(\tau - \tau_{3} - \tau_{4}) + \frac{\rho_{E}^{2}}{1 - \rho_{E}^{2}} G(\tau - \tau_{5} - \tau_{6} - \tau_{7}) + \varepsilon^{2} \rho_{Y}^{2} G(\tau - \tau_{3} - \tau_{4} \pm \tau_{Y1}) + \frac{\rho_{F}^{2}}{1 - \rho_{F}^{2}} G(\tau - \tau_{6} - \tau_{7}) + \frac{\rho_{G}^{2}}{1 - \rho_{G}^{2}} G(\tau - \tau_{7}) \right],$$
(2)

式中: $\tau_1 \sim \tau_7$ 分别为 PMF₁ ~ PMF₇ 光纤的快慢轴 延时差; τ_{Y1} 表示图 2 中 D 点到 Y 点的快慢轴延时 差, $\rho_A \sim \rho_G$ 分别为图 2 上各点的耦合系数; $G(\tau)$ 为 光源的相干函数^[10]。当 θ 为 0°/90°时,由于在 Y 波 导上只能通过传输轴上的光,而与传输轴正交方向 上的光会被 Y 波导抑制,因此检测不出 Y 波导前的 串扰点;当熔接角度 θ 为 45°时,可以测试出各个耦 合点的串扰值。

3 实验验证

按照图 2 所示的原理图,将 Y 波导与 1550 nm 波段分布式偏振串扰分析仪相连接,共测试两只 Y 波导,编号分别为 Y1 和 Y2。表 1 为实验装置的参数 设置,Y 波导 Y1 和 Y2 测试结果如图 3 所示。定义 $\Delta = \tau \times c$,c 表示光速。图 3(a)、(b)分别表示 Y1 上、 下分支,图 3(c)、(d)分别表示 Y2 上、下分支,图 3 中

虚线为保偏跳线 PMF₂与延长保偏光纤 PMF₃之间熔 接角度 θ 为90°时的测试结果,实线为保偏跳线 PMF₂ 与延长保偏光纤 PMF₃之间熔接角度 θ 为 45°时的测 试结果,图 3 中标注的各点分别与图 2 原理中各点相 对应。表 2 为图 3 中各标记点测试数据及分析,D 点 串扰值表示 Y 波导的起偏能力。Y1 波导上、下分支 D点测试串扰值分别为-53.35 dB、-52.93 dB,内部 缺陷点 Y_x上、下分支测试串扰值分别为-59.12 dB、 -58.05 dB;Y2 波导上、下分支 D 点测试串扰值分 别为-56.72 dB、-59.38 dB,内部缺陷点 Y,上、下 分支测试串扰值分别为-56.68 dB、-58.33 dB。定 义 Y 波 导 的 整 体 消 光 比 (PER) 为 R_{PE} = $10\lg [10^{\frac{X_{talk}(D)}{10}} + 10^{\frac{X_{talk}(Y_X)}{10}}], 其中 X_{talk}(D) 表示在 D$ 点的串扰值,X_{talk}(Y_x)表示在Y_x点的串扰值,计算 得到 Y1 波导的上、下分支整体消光比分别为 -52.33 dB、-51.76 dB, Y2 波导的上、下分支整体

- Fiber _	Length /m					Birefringe	nce $/10^{-4}$	L	Optical path difference /mm			
	Y1		Y2		Y1		Y2		Y1		Y2	
	Upper	Lower	Upper	Lower	Upper	Lower	Upper	Lower	Upper	Lower	Upper	Lower
	branch	branch	branch	branch	branch	branch	branch	branch	branch	branch	branch	branch
PMF_1									0.887	0.887	0.887	0.887
PMF_2	1.15	1.15	1.15	1.15	4.1	4.1	4.1	4.1	0.47	0.47	0.47	0.47
PMF_3	4.5	4.5	6	4.5	7.24	7.24	7.24	7.24	3.25	3.25	4.34	3.25
PMF_4	1.60	1.60	1.98	1.98	5.0	5.0	5.0	5.0	0.80	0.80	0.99	0.99
Y-waveguide	0.016		0.016		800		800		1.28	1.28	1.28	1.28
PMF_5	1.85	2.05	2.15	2.03	5.0	5.0	5.0	5.0	0.92	1.02	1.07	1.01
PMF_6	1.4	1.4	1.4	1.4	4.1	4.1	4.1	4.1	0.57	0.57	0.57	0.57
PMF_7									1.003	1.003	1.003	1.003

表 1 Y波导参数设置 Table 1 Y-waveguide parameters setting

* PMF₁ and PMF₇ are the pigtails of internal polarizer and analyzer, respectively, and the optical path difference Δ is a fixed value.

图 3 不同分支上 Y 波导的测试串扰图。(a) Y1 波导上分支;(b) Y1 波导下分支;(c) Y2 波导上分支;(d) Y2 波导下分支 Fig. 3 Test crosstalk diagrams of Y-waveguide with different branches. (a) Y1 waveguide upper branch; (b) Y1 waveguide lower branch; (c) Y2 waveguide upper branch; (d) Y2 waveguide lower branch

消光比分别为一53.69 dB、一55.81 dB。由表 2 和表 3可知:根据内部缺陷点 Y_x 所在的具体位置,可 推算出缺陷点的实际位置;根据实验结果可得内部 缺陷点在 Y 波导内部拐点处。

4 用单偏振光纤验证 Y 波导实验 结论的合理性

由于 Y 波导内部结构较为复杂,只测试 Y 波导无法确定实验结果的合理性,因此用结构简单的单偏振光纤(其具有特殊结构,只能通过一个偏

振态上的光,而对于其正交偏振态有抑制作用,其 消光比为 45 dB,与 Y 波导的特性相似)模拟出已 知的缺陷点,进而对 Y 波导的测试结果进行交叉 验证。

图 4(a)为测试单偏振光纤原理图,与测试 Y 波导原理类似,将单偏振光纤两端与保偏跳线分 别进行 45°、0°熔接。图 4(b)为单偏振光纤的测试 结果,其中虚线为未对单偏振光纤施加压力的测 试结果,实线为对单偏振光纤中一点施加压力的 测试结果。当单偏振光纤外部有压力点时(模拟

					表 2	Y1 波	导测试约	吉果分析	Ť	
			Γ	`able 2	Analy	vsis of	Y1-wav	eguide t	est results	
The Peak po	Theoretical	Original	Original value /mm		Experimental value / mm		$X_{ m talk}/ m dB$		Maaring	
	position	position	Upper branch	Lower branch	Upper branch	Lower branch	Upper branch	Lower branch	Weaming	
В	Δ_2	$\Delta_2 - \Delta_7$	-0.53	-0.53	-0.52	-0.51	-52.92	-56.93	PMF_2 and PMF_3 fusion joints	
С	Δ_3	$\Delta_3 - \Delta_7$	2.25	2.25	2.21	2.20	-54.01	-53.96	Waveguide input pigtail and $\ensuremath{\text{PMF}}_3$ fusion joint	
D	$\Delta_3 + \Delta_4$	$\Delta_3 + \Delta_4 - \Delta_7$	3.05	3.05	3.07	3.03	-53.35	-52.93	Waveguide input pigtail and waveguide connection point	
Е	$\Delta_5 + \Delta_6 + \Delta_7$	$\Delta_5 + \Delta_6$	1.49	1.59	1.46	1.62	-38.66	-46.99	Waveguide output pigtail and waveguide connection point	
F	$\Delta_6 + \Delta_7$	Δ_{6}	0.57	0.57	0.55	0.55	-40.78	-38.60	Waveguide output pigtail and jumper fusion joint	
G	Δ_7	0	0	0	0	0	-28.23	-27.36	Polarization crosstalk analyzer port	
Y_x	$\varDelta_3 + \varDelta_4 + \varDelta_{\rm Y1}$	$\varDelta_3 + \varDelta_4 + \varDelta_{\rm Y1} - \varDelta$	7 3.69	3.69	3.63	3.57	-59.12	-58.05	Y-waveguide internal defect point	
					表 3	Y2 波	导测试约	吉果分析	î	
			Г	`able 3	Analy	vsis of	Y2-wav	eguide t	est results	
D 1	Theoretical Peak position	Original	Original value /mm		Experimental value / mm		$X_{ m talk}/{ m dB}$			
Геак		position	Upper branch	Lower branch	Upper branch	Lower branch	Upper branch	Lower branch	Weahing	
В	Δ_2	$\Delta_2 - \Delta_7$	-0.53	-0.53	-0.51	-0.52	-56.45	-52.45	PMF_2 and PMF_3 fusion joints	
С	Δ_3	$\Delta_3 - \Delta_7$	3.34	2.25	3.29	2.26	-52.63	-47.34	Waveguide input pigtail and $\ensuremath{\text{PMF}}_3$ fusion joint	
D	$\Delta_3 + \Delta_4$	$\Delta_3 + \Delta_4 - \Delta_7$	4.33	3.24	4.32	3.22	-56.72	-59.38	Waveguide input pigtail and waveguide connection point	
Е	$\Delta_5 + \Delta_6 + \Delta_7$	$\Delta_5 + \Delta_6$	1.64	1.58	1.67	1.65	-40.28	-32.16	Waveguide output pigtail and waveguide connection point	
F	$\Delta_6 + \Delta_7$	Δ_{6}	0.57	0.57	0.59	0.54	-29.38	-34.67	Waveguide output pigtail and jumper fusion joint	
G	Δ_7	0	0	0	0	0	-29.40	-34.92	Polarization crosstalk analyzer port	
	$A \perp A \perp A$	A + A + A = -A	4.07	2 88	1.06	3 83	- 56 68	- 58 22	V-waveguide internal defect point	

图 4 单偏振光纤的原理图与测试结果。(a)原理图;(b)测试结果

Fig. 4 Schematic diagram and test results of the single polarized fiber. (a) Schematic diagram; (b) test results

缺陷点),利用分布式偏振串扰分析仪可测试出其 缺陷点的位置及缺陷点的大小,即验证了分布式 偏振串扰分析仪可检测出 Y 波导内部缺陷点的 结论。

5 结 论

结合分布式偏振串扰分析仪,从测试原理上,利 用琼斯矩阵对 LiNbO。集成光学芯片进行理论建模

分析,并且得到了实验验证。实验结果表明,偏振串 扰分析仪能评估出 Y 波导的整体消光比,目能够测 试出内部的一个缺陷点的串扰值,Y1 波导上、下分 支D点测试串扰值分别为-53.35 dB、-52.93 dB, 内部缺陷点 Y_x 上、下分支测试串扰值分别为 -59.12 dB、-58.05 dB; Y2 波导上、下分支 D 点测 试串扰值分别为-56.72 dB、-59.38 dB,内部缺陷 点 Y_x 上、下分支测试串扰值分别为-56.68 dB、 -58.33 dB。则 Y1 波导的上、下分支整体消光比分 别为-52.33 dB、-51.76 dB; Y2 波导的上、下分支 整体消光比分别为-53.69 dB、-55.81 dB。证明了 理论推导的正确性,弥补了强度型消光比测试仪的 不足,并对哈尔滨工程大学的光学相干域测量仪中 未提及的部分进行了补充。最后利用单偏振光纤, 测试出了单偏振光纤的缺陷点,进一步验证了测试 的 Y 波导结果的合理性。总之,分布式偏振串扰分 析仪能检测出由 LiNbO3 集成的 Y 波导内部的缺 陷,在实际应用中能筛选出性能更加优异的 LiNbO₃集成 Y 波导,对制作更高精度的光纤陀螺 有着重要意义。

参考文献

- Yang J, Yuan Y G, Yu Z J, et al. Optical coherence domain polarimetry technology and its application in measurement for evaluating components of high precision fiber-optic gyroscopes [J]. Acta Optica Sinica, 2018, 38(3): 0328007.
 杨军,苑勇贵,喻张俊,等.光学相干域偏振测量技 术及其在高精度光纤陀螺器件测量中的应用[J].光 学学报, 2018, 38(3): 0328007.
 Xu H J, Qin B K, Chen S F. Measurement for
- [2] Xu H J, Qin B K, Chen S F. Measurement for extinction ratio of fiber-optic polarizer [J]. Optical Technique, 2002, 28(5): 419-421, 426.
 徐宏杰,秦秉坤,陈淑芬.光纤型偏振器消光比测试 方法研究[J].光学技术, 2002, 28(5): 419-421, 426.
- [3] Wang X Q, Guo L Q, Liu C, et al. Testing

technology of gyroscope optical devices based on white light interference[C] // China Inertial Technology Society Annual Conference. [S. l. : s. n.], 2015: 156-158.

王学勤,郭礼芹,刘充,等.基于白光干涉的陀螺光 学器件测试技术[C]//中国惯性技术学会第七届学 术年会论文集.[出版地不详:出版者不详],2015: 156-158.

 Chai J. Research on Y waveguide device testing method based on white light interference [D]. Harbin: Harbin Engineering University, 2015: 32-38.

柴俊. 基于白光干涉原理的 Y 波导器件测试方法研 究[D]. 哈尔滨:哈尔滨工程大学, 2015: 32-38.

- [5] Li C, Yuan Y G, Yang J, et al. Inconsistency measurement between two branches of LiNbO₃ integrated optic Y-junction [J]. Optics Communications, 2016, 369: 152-158.
- [6] Alcázar deV A, Rams J, Cabrera J M, et al. Proton exchange of quasistoichiometric LiNbO₃ [J]. Journal of Applied Physics, 1997, 82(10): 4752-4757.
- [7] Thorlabs. Thorlabs China-PZ fiber[EB/OL]. [2019-07-19]. https://www.thorlabschina.cn/ newgrouppage9.cfm?objectgroup_id=6100.
- [8] Li Z H, Yao X S, Chen X J, et al. Complete characterization of polarization-maintaining fibers using distributed polarization analysis [J]. Journal of Lightwave Technology, 2015, 33(2): 372-380.
- [9] Yu Z J, Yang J, Yuan Y G, et al. Distributed measurement of polarization characteristics for a multifunctional integrated optical chip: a review [J].
 IEEE Transactions on Instrumentation and Measurement, 2019, 68(5): 1543-1553.
- [10] Li Z Z, Li Z H, Yao X T, et al. Research on influence of polarization crossstalk on the zero drift and random walk of fiber optic gyroscope [J]. Acta Optica Sinica, 2014, 34(12): 1206001.
 李子忠,李志宏,姚晓天,等.偏振串扰对光纤陀螺 零漂及随机游走影响的研究[J].光学学报, 2014, 34(12): 1206001.